
Optical and vibrational properties of MnF6
4− complexes in cubic fluoroperovskites: insight

through embedding calculations using Kohn–Sham equations with constrained electron

density

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 1519

(http://iopscience.iop.org/0953-8984/18/5/004)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 07:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) 1519–1534 doi:10.1088/0953-8984/18/5/004

Optical and vibrational properties of MnF4−
6

complexes in cubic fluoroperovskites: insight through
embedding calculations using Kohn–Sham equations
with constrained electron density

J M Garcı́a-Lastra1, T Wesolowski2, M T Barriuso1, J A Aramburu3 and
M Moreno3

1 Departamento de Fı́sica Moderna, Universidad de Cantabria, Avenida de los Castros s/n,
39005 Santander, Spain
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Abstract
The local structure and optical and vibrational properties associated with Mn2+-
doped cubic AMF3 (A = K, Rb; M = Mg, Zn, Cd) fluoroperovskites are
studied by means of embedding calculations using Kohn–Sham equations with
constrained electron density. It is shown that while an electronic parameter
like 10Dq essentially depends on the Mn2+–F− distance, the local vibration
frequencies ωi (i = a1g, eg modes) are dominated by the interaction between
F− ligands and nearest M2+ ions lying along bonding directions. The high ωa

values observed for KMgF3:Mn2+ and KZnF3:Mn2+, the huge variations of ωe

and ωa frequencies when the host lattice is changed, as well as the increase of
Huang–Rhys factors and the Stokes shift following the host lattice parameter,
are shown to be related to this elastic coupling of the MnF4−

6 complex to the rest
of the host lattice. The present results support the conclusion that the Stokes
shift is determined by the interaction of the excited 4T1g state with a1g and eg

local modes while the coupling with the t2g shear mode is not relevant. The
variations of local vibrational frequencies and the Stokes shift induced by a
hydrostatic pressure on a given system are shown to be rather different to those
produced by the chemical pressure associated with distinct host lattices.

1. Introduction

The presence of a substitutional transition metal impurity, M, in an insulating or
semiconducting lattice gives rise to new physico-chemical properties. In the case of insulating
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host lattices active electrons are usually localized in the MLN complex formed by the impurity
and the N nearest neighbours or ligands which are lying at a distance R from the metal [1–3].
The properties associated with an impurity thus depend on the actual equilibrium geometry in
the ground and first excited states of the MLN complex, which in turn reflects its interaction
with close ions of the rest of the lattice. This argument stresses the importance of describing
properly the embedding of a complex within the whole lattice for a proper understanding of its
associated properties.

The present work is aimed at exploring the local structure and optical and vibrational
properties associated with Mn2+ impurities in cubic AMF3 fluoroperovskites [4–14] by means
of a recent method for improving the embedding in the realm of the density functional theory
(DFT) [15–17]. In this method the electronic density of a finite cluster is divided into two
regions. In the first region, the electronic density of active electrons, which will be denoted here
as ρI(r), is constructed using a set of embedded orbitals, φi

I . The density ρII(r) corresponding
to the other part of the cluster is frozen and it is used to express the effective potential in the
Kohn–Sham-like one-electron equations for the orbitals φi

I . These equations will be denoted
as Kohn–Sham equations with constrained electron density (KSCED) throughout this work.
Since the KSCED effective potential is expressed by means of the bi-functional of non-additive
kinetic energy of unknown analytic form, not all embedded systems can be treated by means
of the KSCED embedding formalism. In particular, the recently developed gradient-dependent
approximation [15] is adequate only for such systems for which the overlap between ρI(r) and
ρII(r) is small. Among the possible systems falling into this category are such materials in
which the active electrons are well localized [16].

In the present study on Mn2+ impurities in cubic fluoroperovskites particular attention is
addressed to exploring the Stokes shift, a quantity which has a great influence not only for
determining the relaxation in an excited state (placed at energy Eexc above the ground state)
but especially for its implications on the radiative emission probability. In fact, it has been
stressed [18–20, 13] that an increase of the Stokes shift keeping Eexc favours the luminescence
quenching. A good insight into this problem thus requires one first to explore the Stokes shift
in model systems where high symmetry is of great help for clarifying its microscopic origin.

In the case of doped insulating materials the Stokes shift arises basically from the linear
coupling of the electronic excited state responsible for the emission with local vibrational
modes [21–28]. Due to the localized character of active electrons in both ground and excited
states such modes involve basically the distortion of ligands. Experimental evidence on these
modes can sometimes be obtained from low-temperature emission or absorption spectra [28, 8].
In the non-radiative decay process it has been shown that energy is transferred in a first step to
local modes and later to lattice modes [29].

In MnF4−
6 complexes in cubic fluoroperovskites luminescence arises only from the first

4T1g crystal field state which depends on the cubic field splitting parameter 10Dq [7, 8, 10, 30].
For a T1g excited state a linear Jahn–Teller coupling with eg and t2g modes is symmetry allowed
together with the coupling to the full symmetric a1g mode [13, 21, 24]. The Stokes shift thus
depends on the ωe, ωt and ωa frequencies of eg, t2g and a1g modes, respectively, in the ground
state and also on the corresponding constants (termed Ve, Vt and Va, respectively) describing
the coupling with the first excited state 4T1g.

Mn2+-doped cubic fluoroperovskites are model systems whose equilibrium impurity–
ligand distance, R0, has been explored by different methods [5–7, 12]. However, there are
several important questions which need to be clarified:

(1) In the interpretation of electronic parameters like 10Dq or the superhyperfine tensor it
has been assumed that they depend only on R0 but not on the nature of the host lattice
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where the complex is embedded [6, 7]. Although this important simplification seems to
be reasonably consistent with available experimental findings no detailed theoretical study
has been carried out up to now for exploring its validity.

(2) At variance with results for electronic parameters it has recently been pointed out [13] that
frequencies of local modes are however sensitive not only to the equilibrium impurity–
ligand distance at P = 0 atm, R0, but also to the nature of the host lattice where the
complex is placed. This relevant difference between electronic and vibrational properties
thus deserves a further investigation.

(3) The Stokes shift of Mn2+ complexes in cubic fluoroperovskites has been explained up to
now considering the coupling of the 4T1g excited state only with stretching eg and a1g local
modes, thus ignoring the t2g bending mode [13, 26].

(4) Luminescence spectra of KMgF3:Mn2+ at T = 5 K [8] reveal a weak progression
involving a mode whose frequency is 570 cm−1 and a Huang–Rhys factor certainly smaller
than the unity. Recent DFT calculations on clusters of 21 atoms with a point charges
embedding suggest [12] that such a frequency can reasonably be associated with the local
a1g mode. However, this assignment is surprising as h̄ωa = 538 cm−1 for FeF3−

6 [31]
and usually trivalent ions lead to higher vibrational frequencies when compared to divalent
ions if both ligand ion and coordination number are the same [32].

(5) The variation experienced by the Stokes shift when a cubic fluoroperovskite is replaced
by another one has been suggested [13] to be different to that induced by a hydrostatic
pressure on a given system keeping the same the variation of the metal–ligand distance, R.
This statement certainly requires a further investigation.

The present work is aimed at investigating all these questions using the KSCED embedding
formalism. For the sake of completeness some standard Kohn–Sham (KS) calculations for the
whole cluster and using a point charges embedding are also reported. The present work is
divided as follows. Section 2 is devoted to provide with details about the KSCED orbital-free
embedding formalism used in the calculations. In section 3 a brief outline on the linear coupling
between a T state and local modes and its influence on the Stokes shift is included. Section 4
collects the main results obtained in this work as well as an analysis of them, while in the last
section some final considerations are reported.

2. Theoretical: the KSCED orbital-free embedding formalism

The ground-state electron density of an embedded molecule in a given environment can be
derived from one-electron equations [33]:

{−∇2/2 + V KSCED
eff [ρI, ρII](r)}φKSCED

i (r) = εKSCED
i φKSCED

i (r) (1)

where ρI = 2
∑N

i=1 φKSCED∗
i (�r)φKSCED

i (�r) is the electron density of the embedded system
constructed using one-electron functions and ρII is the electron density of the environment.
Atomic units are applied in all equations throughout the text. The superscript KSCED is used
to indicate that such quantities as the effective potential, orbitals, and orbital energies, differ
from the corresponding quantities occurring in Kohn–Sham [34] equations:

{−∇2/2 + V KS
eff [ρ](r)}φKS

i (r) = εKS
i φKS

i (r) (2)

where ρ = 2
∑N

i=1 φKS∗
i (�r)φKS

i (�r).
The effective potential in equation (1) differs from that in equation (2) by additional terms

describing the interactions between the two subsystems. These terms have a universal system-
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Figure 1. 13 + 8 cluster used in the KSCED calculations. There are 13 ions in the region I, while
region II (where the electronic density is frozen) involves 8 ions.

independent form [33] reading

V emb(KSCED)
eff [ρI, ρII](r) = −

∑

α

Z II
α /|RII

α − r| +
∫

ρII(r′) dr′/|r − r′|

+ δExc[ρ]/δρ|ρ=ρI+ρII − δExc[ρ]/δρ|ρ=ρI + δT nad
s [ρI, ρII]/δρ|ρ=ρI (3)

where NII is the number of nuclei in subsystem II and Z II
α is the nuclear charge of nucleus

α in subsystem II. The exchange–correlation functional Exc[ρ] is defined as in the KS
formalism [34] and the non-additive kinetic energy T nad

s [ρI, ρII], a functional depending on
two-electron densities, is defined as

T nad
s [ρI, ρII] = Ts[ρI + ρII] − Ts[ρI] − Ts[ρII] (4)

where Ts[ρ] is the kinetic energy of the reference system of the non-interacting electrons.
Equations (1) and (2) have different solutions, which depend on the environment

represented in the KSCED embedding potential by means of positions and electric charges
of atomic nuclei and the electron density of the environment. KSCED calculations have been
performed by means of a modified deMon code [35]. The following approximations are used
in these equations: (i) the Becke–Perdew approximation [36, 37] is used for Exc[ρ] and (ii) the
non-additive kinetic energy functional is of the generalized gradient approximation (GGA)
form proposed in [15], in which the gradient-dependency of Ts[ρ] takes the form proposed by
Lembarki and Chermette [38]. Such an approximation T nad

s [ρI,ρII] was demonstrated to be
adequate for the cases where the ρI, ρII overlap is small. The basis sets of the DZVP quality
(double-ζ GTO plus five polarization functions) was used in all embedding calculations.

In the KSCED embedding calculations, two different models of the environment have been
used. In the first one (called 13 + 8, figure 1), there are 13 ions in the region I, while region II
(where the electronic density is frozen) involves 8 ions. Therefore, there are 6 ions outside the
MnF4−

6 complex lying also in the region I. In the second model (called 21 + 36, figure 2), there
are 21 and 36 ions in regions I and II, respectively. The electrostatic effect of the rest of lattice
has been simulated in both cases by means of point charges surrounding the clusters.

Conventional DFT calculations in the KS framework have been performed using the 2004
version of the Amsterdam Density Functional (ADF) code [39]. In these calculations a unique
cluster of 21 atoms (similar to the 13 + 8 cluster of the KSCED calculations) has been used. In
order to compare with the KSCED results, the same GGA functional and electrostatic potential
have been employed. TZP quality basis sets (triple-ζ STO plus one polarization function) have
been employed in these calculations. The core electrons (1s–3p for Mn and 1s for F) were kept
frozen.
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Figure 2. 21 + 36 cluster. There are 21 and 36 ions in regions I and II, respectively.

3. Coupling of 4T1g excited state with local modes: Stokes shift

When luminescence from Mn2+ impurities in cubic fluoride lattices is observed it comes
only from the 4T1g → 6A1g transition involving the first excited state 4T1g. Other possible
luminescence channels are normally quenched [8, 10, 30]. For Mn2+-doped fluorides the first
excited state 4T1g lies well below the bottom of the conduction band of the host lattice [40] and
thus there is not the anomalous luminescence observed for divalent rare earth cations like Tm2+,
Yb2+ or Eu2+ [41, 42]. The existence of Stokes shift reflects an equilibrium geometry in the
first excited state different to that of the ground state. This fact in turn underlines the localized
character of active electrons involved in the MnF4−

6 complex. The changes of equilibrium

geometry in MnF4−
6 on passing from 6A1g to 4T1g are usually described through the linear

coupling with local modes [43, 21, 13]. For an octahedral complex a T state can be coupled
linearly only to eg and t2g modes, in addition to the symmetric a1g mode which is always
allowed. Working in the {xz, yz, xy} basis of the triplet T state, this coupling is pictured by the
following effective Hamiltonian:

Heff = VaIQa + Ve(Uθ Qθ + Uε Qε) + Vt(Uxy Qxy + Uxz Qxz + Uyz Qyz). (5)

Here I means the identity 3 × 3 matrix while Uθ , Uε and Uxy matrices [21] are given by

Uθ =




1
2 0 0
0 1

2 0
0 0 −1



 ; Uε =





−√
3

2 0 0

0
√

3
2 0

0 0 0




 ;

Uxy =
( 0 −1 0

−1 0 0
0 0 0

)

.

(6)

The coupling with these modes induces a decrease of the energy minimum corresponding
to the 4T1g state. The energy decrement induced by the i mode, Ei (i = a1g, eg and t2g), is just
given by [21, 13]

Ei = V 2
i /2MLω2

i = Si h̄ωi i = a1g, eg (7)

Et = (2/3)(V 2
t /2MLω2

t ) (8)

where ML stands for the ligand mass, and Sa and Se denote the Huang–Rhys factors related to
a1g and eg modes, respectively.

In the case of Cr3+, V2+ or Mn2+ octahedral complexes there is not experimental
evidence of a significant coupling with the shear t2g mode [28, 44–46, 8]. By contrast, low-
temperature luminescence spectra sometimes reveal [22, 28, 44–46] the existence of vibrational
progressions involving both a1g and eg stretching modes. Additional light on this matter will
be provided in section 4 by comparing the calculated values of Va, Ve and Vt constants.
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It is worth noting that if only the a1g and eg local modes are important the coupling with
the non-symmetric Jahn–Teller mode does not modify the shape of an optical transition from
a singlet to a triplet state [47]. Nevertheless, it produces additional vibrational progressions
to those coming from the a1g mode [44–46]. In this situation the Stokes shift can simply be
written as [44, 10, 13]

ES = E0
S + 2h̄ωu tanh(h̄ωu/2kBT ) (9)

E0
S = 2(Sah̄ωa + Seh̄ωe). (10)

The second term in (9) simply reflects that d–d transitions for an octahedral complex are parity
forbidden and thus progressions at T = 0 K start not at zero phonon lines but at the so-
called false origins separated from it by the h̄ωu energy corresponding to the odd vibrational
mode enabling the transition [44]. As the experimental ES values for Mn2+-doped cubic
fluoroperovskites lie in the 1200–1600 cm−1 region [10] and h̄ωu ≈ 250 cm−1, the odd phonon
contribution to (9) is certainly small when compared to E0

S.
When a hydrostatic pressure is applied on a given system the variations of Va and Ve

coupling constants and ωa and ωe frequencies around the distance corresponding to equilibrium
at P = 0 atm are described by [13, 24, 26]

Vi = Ci R−ni i = a1g, eg (11)

γi = −∂Lωi/∂LV = −(1/3)(∂Lωi/∂L R) i = a1g, eg. (12)

Therefore, the exponents ni and the Grüneisen constants γi (i = a, e) are behind the sensitivity
of Huang–Rhys factors and the Stokes shift to a hydrostatic pressure. It is worth noting that for
the first excited state 4T1g of a MnF4−

6 complex Va is practically equal to −(∂10Dq/∂ R). This
just means that [26]

na ≈ n + 1 (13)

where n is the exponent reflecting the sensitivity of 10Dq to R variations:

10Dq = K R−n . (14)

Due to the localized character of active electrons it can be expected that the same change
in 10Dq is produced either by a hydrostatic pressure or by placing the MnF4−

6 complex in
another isomorphous host lattice provided the R change, �R, is the same. However, this idea
is no longer true when local vibrational frequencies are concerned [13]. In fact, as the complex
is in general elastically coupled to close ions of the rest of the lattice, local vibration frequencies
can be modified by changing the nature of such ions even if R is kept. Therefore, the variations
of ωi , �ωi (i = a, e), due to the replacement of a host lattice by another isomorphous one
(change of chemical pressure) are not necessarily equivalent to those induced by a hydrostatic
pressure on a given system [13]. A simple way of quantifying such a difference is through the
chemical Grüneisen parameter γ c

i . Let us consider two lattices, L A and L B , where the same
complex is embedded. If ωi (i = a, e) and R0 denote the frequencies and equilibrium R values
at zero hydrostatic pressure for L A while the values for L B are described by ωi + �ωi and
R0 + �R, respectively, then the chemical Grüneisen parameter is defined by

γ c
i = −(1/3)(�ωi/�R)(R0/ωi ) i = a1g, eg. (15)

In a similar way 10Dq values of different AMF3:Mn2+ systems at zero pressure can also
be compared. Assuming that along the fluoroperovskites series it can also be written

10Dq = K R−nc
(16)

then the 10Dq variations due to changes of chemical pressure are described through the nc

exponent. Exponents nc
i (i = a, e) reflecting the sensitivity of Va and Ve coupling constants

under chemical pressure are defined in a similar way to equation (16).
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Table 1. Mn2+–F− equilibrium distances, R0, obtained in KSCED and KS calculations.
Experimental distances [6, 7, 10, 12] are also shown (errors are given in parentheses). Units are
in Å.

Calculated Experimental

Lattice RH KSCED (13 + 8) KSCED (21 + 36) KS EPR Optical

KMgF3 1.986 2.064 2.043 2.067 2.07 (1) 2.068 (4)
KZnF3 2.027 2.107 2.090 2.103 2.084 (6) 2.080 (4)
RbCdF3 2.200 2.166 2.162 2.158 2.124 (6) 2.134 (4)
RbCaF3 2.228 2.130 2.127 2.176 2.142 2.131

4. Results and discussion

4.1. Equilibrium geometry for the ground state

The equilibrium Mn2+–F− distances, R0, for several Mn2+-doped fluoroperovskites calculated
through different procedures are collected in table 1. In these calculations of R0 only
the Mn2+–F− distance is left as a variable. This assumption is reasonable [12] provided
(R0 − RH)/RH � 1, where RH means the M–F distance of the perfect AMF3 host lattice.
This condition is reasonably fulfilled as R0 differs from RH by less than 4%. Moreover, in
table 1 the results obtained by KSCED and conventional KS calculations are compared with
those derived through previous determinations of R0 from the analysis of experimental 10Dq
and isotropic superhyperfine constants [6, 7, 10, 12, 13]. Bearing in mind that errors involved
in calculated distances through DFT are ∼1%, the comparison between R0 values derived from
experimental data and those reported in this work is reasonable. As R0 figures from the 13 + 8
and 21 + 36 schemes are quite similar the first scheme with less computational cost will be
henceforth employed. Only in a few cases have data through the 21 + 36 procedure also been
derived. We have verified that if in region I only the 7 ions of the MnF4−

6 complex are included
the computed R0 values differ more from experimental ones as it could be expected.

From a physical standpoint, the results embodied in table 1 show that R0 values for MnF4−
6

complexes do depend on the host lattice, pointing out that the MnF4−
6 complex has some elastic

coupling with close ions of the rest of the lattice. By comparing the same complex in two
similar lattices, some information about this elastic coupling is given by the f parameter,
defined by

f = �R0/�RH. (17)

From table 1 a value f ≈ 0.3 is derived for Mn2+-doped cubic fluoroperovskites. This
figure can be compared with f � 0.1 obtained for Cr3+ in elpasolites [48] or Fe3+ in
fluoroperovskites [49] where the elastic coupling of the transition metal complex with the rest
of the lattice is certainly smaller.

4.2. Consistency of the KSCED embedding formalism

The results gathered in table 1 have been derived keeping ρII(r) frozen while finding the right
density of region I, ρI(r), where active electrons are located. For exploring the consistency
of the method one can calculate in a second step the right density of region II keeping ρI(r)
frozen. Let us designate such a density by ρ′

II(r). In a subsequent freeze and thaw step the
correct density of region I is again calculated but using now the relaxed density ρ′

II(r) as the
frozen density of region II. Let us call this new density of region I ρ′

I(r). The consistency of the
method requires that ρ′

I(r) is very close to ρI(r). In table 2 the equilibrium Mn2+–F− distances
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Table 2. Mn2+–F− equilibrium distances obtained in the KSCED calculations (13 + 8 clusters)
using ρII(r) (unrelaxed density) and ρ′

II(r) (relaxed density). Units are in Å.

Lattice ρII(r) ρ′
II(r)

KMgF3 2.064 2.061
KZnF3 2.107 2.108
RbCdF3 2.166 2.164
RbCaF3 2.130 2.129

Table 3. Values of the 10Dq splitting parameter obtained from orbital energy differences in the
ground state through KSCED calculations (13+8 and 21+36 schemes). Experimental values, taken
from [7, 10], are shown for comparison. Energies are in eV. Values of the 10Dq decay exponent n
are also given.

(13 + 8) (21 + 36)
Experimental

10Dq n 10Dq n 10Dq

KMgF3 1.182 4.50 1.176 4.72 1.045
KZnF3 1.047 4.16 1.066 4.67 1.018
RbCdF3 0.974 4.33 0.972 4.58 0.900
RbCaF3 1.091 3.93 1.070 4.98 0.905

calculated with ρ′
I(r) are compared to those derived from ρI(r). As the two R0 values differ by

less than 0.15%, this fact thus supports the consistency of the KSCED embedding formalism.

4.3. 10Dq and d10Dq/dR values for MnF4−
6 in cubic fluoroperovskites

10Dq values calculated at the equilibrium distance, R0, for the studied AMF3:Mn2+ systems
are displayed in table 3 and compared to experimental values [6, 7, 12]. In this case the
results have been derived using both 13 + 8 and 21 + 36 partition schemes. Similar results
are obtained in both cases. In table 3 the value of the exponent n defined in equation (14),
characterizing the variation of 10Dq of a given system under hydrostatic pressure, is reported as
well. For achieving this goal calculations have been carried out for different values of the lattice
parameter a, finding for each one the equilibrium Mn2+–F− distance and the corresponding
10Dq value. Very similar values of the exponent n (lying between 4 and 5) are found for
different AMF3:Mn2+ systems.

Let us now focus on 10Dq values of different AMF3:Mn2+ systems at zero pressure when
the equilibrium Mn2–F− distance is R0. Looking at the data collected in table 3 it turns out that
the chemical exponent nc is essentially coincident with the hydrostatic exponent n in agreement
with a previous guess [7]. Experimentally a value nc = 4.7 has been reported [10, 7]. This
result thus supports the conclusion that in the present systems 10Dq is basically originated in
the MnF4−

6 complex and only depends on the actual Mn2+–F− distance. In other words, the
10Dq variations produced by hydrostatic or chemical pressures but leading to the same change
of Mn2+–F− distance would essentially be the same. This statement is supported by the results
gathered in table 4, where the 10Dq values calculated for KMgF3:Mn2+ and RbCdF3:Mn2+ at
the same distance are reported. In table 4 are also shown the values of the corresponding lattice
parameters where this situation is produced. It can be seen that the computed 10Dq value for
KMgF3:Mn2+ at R = 2.11 Å coincides with that for RbCdF3:Mn2+ at the same distance.

From a microscopic standpoint it has been shown that d10Dq/dR for the MnF4−
6 complex

depends to a great extent on the small 2s–2p hybridization on ligands [50, 3]. A similar situation
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Table 4. Comparison between Mn2+–F− equilibrium distances, R0, and 10Dq splittings obtained
from KSCED (13 + 8 clusters) and KS calculations. Distances are in Å and energies in eV.

R0 10Dq

Lattice RH KSCED KS KSCED KS

KMgF3 2.027 2.11 2.104 8626 9445
RbCdF3 2.160 2.11 2.11 8430 9175

Table 5. Mn2+–F− equilibrium distances, R0, and vibration frequencies of a1g and eg modes
obtained through KSCED (13 + 8 cluster) and KS calculations, considering different lattice
parameters for each compound. Frequencies are in cm−1 and distances in Å.

KSCED 13 + 8 KS

Lattice RH R0 h̄ωa h̄ωe R0 h̄ωa h̄ωe

KMgF3 1.945 2.019 607 515 2.019 616 531
KMgF3 1.9865 2.064 564 466 2.068 554 471
KMgF3 2.027 2.093 525 424 2.103 511 420
KZnF3 1.986 2.057 557 458 2.057 545 477
KZnF3 2.027 2.107 498 403 2.103 504 425
KZnF3 2.068 2.145 452 352 2.149 456 370
RbCdF3 2.160 2.109 477 377 2.117 462 377
RbCdF3 2.200 2.166 412 318 2.158 421 330
RbCdF3 2.240 2.191 377 270 2.198 385 283

has been found for other systems like CrF3−
6 or CrO4−

4 [51, 52]. Experimental values of the
exponent n close to 5 are still justified through the crystal field model [28] despite it predicting
10Dq values which are one order of magnitude smaller than the right ones [3].

4.4. Local vibrations and Grüneisen parameters

Calculated values of ωe and ωa frequencies by means of the KSCED embedding formalism
(13+8 partition scheme) for several AMF3:Mn2+ systems are reported in table 5 and compared
to those derived through the conventional KS method. As a salient feature, aside from the
frequencies corresponding to the lattice parameter at zero pressure, results are also collected for
other a values which are experimentally attainable under hydrostatic pressure. This allows one
to compare very easily the action of hydrostatic and chemical pressures upon local frequencies.
It is worth noting that γe was not calculated in a previous work [13].

Let us first consider the R-dependence of h̄ωa values found for KMgF3:Mn2+. It can be
seen in table 5 that on passing from R = 2.064 to 2.093 Å, h̄ωa decreases by 39 cm−1, thus
implying a reduction of 13.5 cm−1/pm. However, a bigger reduction of 19.5 cm−1/pm is found
when comparing h̄ωa = 525 cm−1 for KMgF3:Mn2+ at R = 2.093 Å with h̄ωa = 477 cm−1

for RbCdF3:Mn2+ at R = 2.109 Å. Along this line it is also important to notice that the h̄ωa

and h̄ωe values for KZnF3:Mn2+ and RbCdF3:Mn2+ calculated at the same distance (2.108 Å)
are not the same. In agreement with previous findings [13] all these facts thus support the
conclusion that: (i) the values of local frequencies ωe and ωa are not only a function of the
impurity–ligand distance, R; (ii) if the variation of the Mn2+–F− distance is the same the
changes of ωe and ωa induced by a chemical pressure are bigger than those produced on a
single system by the hydrostatic pressure. These conclusions are also reflected in the different
values of Grüneisen constants γi (i = a, e) (extracted in table 6 from the results of table 5)
and the chemical γ c

i parameters. For instance, γa (γe) for KMF3:Mn2+ (M = Mg, Zn) is
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Table 6. Grüneisen constants for a1g and eg modes obtained from KSCED (13 + 8 clusters) and
KS calculations.

γa γe

Lattice KSCED KS KSCED KS

KMgF3 1.3 1.5 1.8 1.9
KZnF3 1.7 1.4 2.1 1.9
RbCdF3 2.0 1.6 2.9 2.5

found to be less than 1.7 (2.1) while γ c
a = 2.2 and γ c

e = 2.8. It can be seen that the results
derived through the KSCED and KS methods are certainly very close. The present results thus
support the conclusion that γ c

e values close to 3 are certainly possible. Although the same
conclusion was obtained in a previous work [13] using older KS-DFT calculations, there are,
however, some relevant differences with the results obtained in the present work. So, the value
γ c

a = 2.2 obtained in the present work is somewhat smaller than γ c
a = 3.2 reached in [13].

Moreover, in [13] the values of h̄ωa for KMgF3:Mn2+, KZnF3:Mn2+ and RbCdF3:Mn2+ were
found to be equal to 556, 454 and 353 cm−1, respectively. Therefore, although the value
h̄ωa = 556 cm−1 for KMgF3:Mn2+ at zero pressure is quite close to those gathered in table 5,
the figure h̄ωa = 454 cm−1 derived for KZnF3:Mn2+ is, however, about 50 cm−1 smaller than
those reached in the present work (table 5).

As previously noticed [13], the difference between γi and γ c
i parameters emphasizes the

elastic coupling of the MnF4−
6 complex with close ions of the rest of the AMF3 lattice. Along

a 〈100〉 direction a F− ligand is placed between a Mn2+ impurity and a M2+ ion of the host
lattice. Let us designate by k and k ′ the force constants associated with Mn–F and F–M bonds,
respectively. In a simple model a quantity like h̄ω2

a depends on k + k ′. When there is a
significant elastic coupling of the complex with the rest of the lattice k ′ cannot be neglected,
and thus h̄ωa and h̄ωe can be modified just by changing the nature of the host cation M2+ even
if R is kept.

The low-temperature luminescence spectrum of KMgF3:Mn2+ [8] shows a weak
vibrational progression involving an energy step h̄ωv = 570 cm−1. Bearing in mind the
calculated h̄ωa values for KMgF3:Mn2+ at zero pressure (table 5) through the KSCED and
KS methods (564 and 554 cm−1, respectively), such a vibrational progression can reasonably
be associated with the a1g mode of MnF4−

6 embedded in KMgF3. This result thus supports a

previous conclusion [13]. Therefore, the h̄ωa value for MnF4−
6 in KMgF3 is a little higher

than the value h̄ωa = 538 cm−1 measured by Raman spectroscopy for the (NH4)3FeF6
compound involving the trivalent Fe3+ ion [31]. This surprising result [32] can be understood
by taking into account the big effects of chemical pressure along the series of Mn2+-doped
fluoroperovskites. In fact, for R0 = 2.13 Å (corresponding to the sum of ionic radii of Mn2+
and F−) h̄ωa values smaller than 490 cm−1 are expected for MnF4−

6 in fluoroperovskites.
The present results for KZnF3:Mn2+ (table 5) give h̄ωa = 500 cm−1, which is a bit smaller

than h̄ωv = 540 cm−1 measured in the corresponding luminescence spectrum. However, it can
be noticed that in the present calculations the obtained R0 values are 1–2 pm higher than the
figure derived from the analysis of experimental optical and electron paramagnetic resonance
(EPR) parameters [6, 7, 10, 12]. Bearing in mind the results of table 6, a reduction of ∼2 pm
in the R0 value would imply an increase of h̄ωa close to 30 cm−1.

4.5. Coupling constants for the 4T1g state: Stokes shift of AMF3:Mn2+ at zero pressure

In a first step, values of the Va and Ve coupling constants have been derived from the variations
of energies of orbitals of the ground state of the MnF4−

6 complex under isotropic or Qθ
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Table 7. Linear coupling constants, Vi , Huang–Rhys factors, Si , and Stokes shift (E) for A1g
and Eg modes obtained from orbital splittings in KSCED (13 + 8) calculations. Values of V are in

cm−1/pm and E in cm−1. Experimental ES values [10] are also given.

Lattice R0 Va SA 2Ea Ve Se 2Ee E0
S ES (experimental)

KMgF3 2.064 88.0 0.38 428 66.3 0.38 354 782 1205
KZnF3 2.107 71.4 0.36 363 54 0.39 316 679 1430
RbCdF3 2.166 65.3 0.53 442 49 0.67 424 866 1560

distortions, respectively [26, 23]. For instance, under a Qθ ∼ 3z2 − r2 distortion of the
octahedron there is a splitting, �e, between the x2–y2 and 3z2–r2 levels of the eg orbital as
well as a splitting, �t, between the xy and the (xz, yz) levels of the t2g shell. For an elongated
octahedron Qθ , �e and �t are all positive. A reasonable expression for Ve corresponding to
the first excited state 4T1g of the MnF4−

6 complex is given by [26]

Ve(
4T1g) = (1/2){∂(�e − 4�t/3)/∂ Qθ }. (18)

Values of Va and Ve coupling constants calculated by this procedure at the equilibrium distance
at zero pressure for several Mn2+-doped fluoroperovskites are reported in table 7. In this table
the calculated values of Huang–Rhys factors, Sa and Se, and the quantities ES(i) (i = a, e)
are also collected. The calculated E0

S value is compared to experimental results of ES at room
temperature.

The results for Va and Ve constants gathered in table 7 are quite similar to those previously
derived by means of both MS-Xα and Extended Hückel methods [23, 26, 13]. They lead to Sa

values smaller than unity and thus support the existence of weak progressions involving the a1g

mode for both KMgF3:Mn2+ and KZnF3:Mn2+ systems [8]. They give rise to an increase of
Sa, Se and also E0

S as long as the equilibrium distance, R0, increases. By contrast, similarly to
what is obtained for 10Dq , Va and Ve are found to decrease when R0 increases. From table 7
it is derived that nc

a ≈ nc
e ≈ 5.5.

As shown in table 7, the experimental Stokes shift, ES, has been found to increase on going
from KMgF3:Mn2+ to RbCdF3:Mn2+ [10]. The difference between the experimental Stokes
shift and the calculated E0

S quantity can reasonably be ascribed to the odd mode assistance
depicted by equation (9). To reproduce the E0

S quantity (quite sensitive to values of Vi constants
and ωi frequencies) along a series of different host lattices is not a simple task. The calculated
decrease of E0

S (table 7) on passing from KMgF3:Mn2+ to KZnF3:Mn2+ can be ascribed to an
underestimation of Va.

When Ei (i = a, e) and E0
S are derived looking directly at the relaxed 4T1g excited

state (table 8) a similar picture to that of table 7 is obtained. For the sake of completeness
the equilibrium values of the Mn2–F− distance, R0(

4T1g), and Qθ coordinate, Q0
θ , are also

reported in table 8. It can be noticed that R0(
4T1g) is about 1% smaller than R0 for the ground

state 6A1g. This result is qualitatively consistent with the different electronic configuration
exhibited by the ground (t32ge2

g) and the 4T1g(t42ge1
g) states. Therefore, on passing from 6A1g to

4T1g there is a transfer of an antibonding eg electron with σ -character to another antibonding
level but with π -character. An elongated octahedron is well described by the axial, Rax, and
equatorial, Req, distances given by

Rax = R0 + 2η; Req = R0 − η (η > 0). (19)

The relation of the η parameter describing the tetragonality with the Qθ coordinate is simply
given by [21, 53]

Qθ = √
12η. (20)
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Table 8. Stokes shifts contributions, 2Ei , from i = a1g, eg modes derived directly from

equilibrium geometries of 6A1 and 4T1 states obtained with the KS method. Mn2+–F− equilibrium
distances, R0, for both states are also shown. Distances are in Å and energies in cm−1.
Experimental ES values from [10] are also given.

Lattice R0 (6A1) R0 (4T1) Q0
θ

(Å) 2Ea 2Ee E0
S ES (experimental)

KMgF3 2.064 2.046 0.044 480 454 934 1205
KZnF3 2.107 2.078 0.040 462 316 777 1430
RbCdF3 2.166 2.126 0.063 581 462 1043 1560

Therefore, the Jahn–Teller distortion in the relaxed 4T1g state leads to an axial distance, Rax,
which is only 1.7% higher than R0(

4T1g) for RbCdF3:Mn2+. This figure, together with the
value Ee = 290 cm−1 for the Jahn–Teller energy, emphasizes that the Jahn–Teller effect in the
4T1g state of MnF4−

6 is weaker than in the ground state of NaCl:Rh2+ [53].
Bearing in mind equations (8), (9), (15), (16) the R-dependence of Ei and Si quantities is

just given by

Si ∝ R
9γ c

i
−2nc

i
e ; Ei ∝ R

6γ c
i
−2nc

i
e (i = a, e). (21)

Therefore, if nc
a ≈ nc

e ≈ 6 (table 7) the high values of the chemical Grüneisen parameters
γ c

a = 2.2 and specially γ c
e = 2.8 are consistent with the increase of the experimental Stokes

shift when R0 increases as a result of a different chemical pressure [10].
For the sake of completeness an estimation of the Vt coupling constant has also been carried

out. In a good approximation a 4T1g state in Oh is simply described by the Slater determinant

|4T1g〉 = |yz↑, xz↑, xy↑, xy↓, 3z2 − r2↑|. (22)

Let us consider the effects of a trigonal distortion on the 4T1g state one-electron orbitals
involved in (22). According to equation (8), a trigonal distortion described by Qxy = Qxz =
Qyz = Q splits the 4T1g state into a doublet and a singlet separated by 3Vt Q. As the
degeneracy in the eg orbital remains under this D3h distortion the splitting 3Vt Q is related
to the splitting, �t, between the levels of the t2g shell. Writing �t = β Q it is found that
Vt = β/3. Through this procedure there has been derived for KMgF3:Mn2+ at R0 = 2.06 Å a
value Vt = 8 cm−1/pm. The calculated value for h̄ωt corresponding to the t2g shear mode
has been found to be equal to 219 cm−1 and thus Et = 22 cm−1 according to equation (8).
Therefore, the estimated Vt and Et values are both one order of magnitude smaller than the Vi

and Ei (i = a, e) quantities displayed in tables 7 and 8. Due to this fact, it can reasonably be
explained that E0

S can be understood through the coupling with the two a1g and eg stretching
modes. For octahedral CrX3−

6 units (X = F, Cl and Br) in cubic elpasolites no experimental
evidence of any coupling of the first excited state, 4T2g, with the t2g shear mode has been
reported [24, 28, 44, 45].

4.6. Stokes shift of KMgF3:Mn2+ under hydrostatic pressure

The influence of a hydrostatic pressure on Va and Ve constants and the E0
S quantity has also

been simulated. In table 9 results on these variables for KMgF3:Mn2+ are reported from
calculations carried out at three different values of the lattice parameter a. As expected, both Va

and Ve constants decrease when the lattice parameter a and the equilibrium Mn2+–F− distance,
R0, (at different pressures) increase. The corresponding exponents na and ne are collected in
table 10. It can be seen that they are not far from the values of the chemical exponents nc

a
and nc

e discussed in the previous section. Nevertheless, a different behaviour appears when
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Table 9. Linear coupling constants, Vi (in cm−1/pm), Huang–Rhys factors, Si , and Stokes shifts,
2Ei (in cm−1) (i = a1g, eg) obtained from orbital splittings in KSCED (13 + 8) calculations for
KMgF3 with different lattice constants.

RH R0 Va Sa 2Ea Ve Se 2Ee E0
S

1.945 2.019 99.8 0.39 477 74.1 0.35 363 840
1.987 2.064 88.0 0.38 430 66.3 0.38 354 784
2.027 2.093 78.4 0.37 394 62.4 0.45 379 773

Table 10. Decay exponent with the distance, ni , of linear coupling constants Vi (i = a1g, eg)
obtained from KSCED (13 + 8 clusters) and KS calculations.

na ne

Lattice KSCED KS KSCED KS

KMgF3 6.7 5.7 4.8 5.1
KZnF3 5.6 5.8 4.9 4.8
RbCdF3 6.5 6.3 4.8 5.2

looking at the E0
S quantity which is not found to increase when R does. By contrast, when

R increases by 3.7%, E0
S is found to decrease by 8%. This significant difference with the

behaviour of E0
S under chemical pressure can easily be rationalized by taking into account the

values of Grüneisen constants (table 6) and na and ne exponents given in table 10. Similarly to
the discussion given in the preceding section there can be written

Ei ∝ R6γi −2ni (i = a, e). (23)

Therefore, if na = 6 and γa = 1.4 then 6γa − 2na = −3.6 and thus Ea increases when R is
reduced by an applied hydrostatic pressure.

In a first study on Huang–Rhys factors it was suggested that they would tend to decrease
when the metal–ligand distance is reduced. This trend is well followed by the results collected
in tables 10 and 7. Experimental results carried out on Cs2NaScCl6:Cr3+ have verified [28]
that, in this case, Sa and Se decrease when a hydrostatic pressure is applied.

4.7. Elastic coupling of the MnF4−
6 complex to the host lattice

A simple way to visualize the influence of the elastic coupling of the MnF4−
6 complex with

close ions of the rest of the lattice is given in this section. When a MnF4−
6 complex is inserted

in a fluoroperovskite its equilibrium distance at zero pressure is R0. However, if only the
isolated MnF4−

6 complex is considered it is necessary to apply an external force on each ligand
in order the keep the impurity–ligand distance equal to R0. Therefore, the ground state energy
of the isolated complex around Qa = 0 can now be written as

E(Qa) = E0 + f Qa + (1/2)k Q2
a + · · · . (24)

If the linear term is balanced by an external force it turns out that the corresponding frequency
for the isolated complex, termed ωai , is just given by

ω2
ai = k/ML . (25)

If the motion of ligands for the complex in the lattice is also influenced by their interaction
with close Mg2+ cations it can be expected that ω2

ai < ω2
a . Simple KS calculations carried

out on KMgF3:Mn2+ give h̄ωai = 284 cm−1 for R0 = 2.068 Å, a figure which is certainly
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smaller than h̄ωa = 554 cm−1 reported in table 5. For estimating the contribution of the force
constant k ′ to the value of h̄ωa an isolated MgF4−

6 octahedron has also been taken into account.
Following a similar process to that described for MnF4−

6 the corresponding frequency ωMi can
equally be determined. This frequency reflects the k ′ force constant through the expression

ω2
Mi = k ′/ML . (26)

For KMgF3 it has been found h̄ωMi = 450 cm−1. Moreover, assuming as a reasonable first
approximation that

ω2
a = (k + k ′)/ML = ω2

ai + ω2
Mi , (27)

a value h̄ωa = 532 cm−1 is derived, not far from h̄ωa = 554 cm−1 collected in table 5.
A similar picture is obtained for other lattices. For instance, for RbCdF3:Mn2+ the values
h̄ωai = 272 cm−1 and h̄ωMi = 358 cm−1 have been obtained in the present calculations.
These results prove in an easy way that although the M2+ cation can be considered at rest the
motion of ligands in a1g and eg modes is greatly influenced by the F−–M2+ force constant.

A similar analysis performed for Cr3+ in elpasolites [48] showed that in this case k > k ′.
This fact indicates that in elpasolite lattices the elastic coupling of the complex to the rest of
the lattice tends to be smaller than in the case of perovskites, a conclusion which is reasonable
when looking at the two crystal structures. However, it is worth noting that in a perovskite
lattice the decoupling form the rest of the lattice can be increased if impurities with a nominal
charge higher than 2 (like Fe3+ or Cr3+) are introduced [49].

5. Final remarks

A detailed study of model systems corresponding to Mn2+ impurities in cubic AMF3

fluoroperovskites has been carried out by means of two methods based in the DFT. The main
trends are reproduced by both methods. Results obtained by means of the KSCED orbital-free
embedding formalism show that a good description is reached placing only 13 atoms in region
I and 8 in the frozen region II.

It has been demonstrated that while an electronic parameter like 10Dq essentially depends
on the Mn2+–F− distance this is no longer true as far as local vibration frequencies are
concerned. Such frequencies have been shown to be dominated by the interaction between F−
ligands and nearest M2+ ions lying along bonding directions. This fact is responsible for the
high ωa values observed [8] for KMgF3:Mn2+ and KZnF3:Mn2+. Moreover, it also explains
the huge variations of ωe and ωa frequencies when the host lattice is changed, as well as the
increase of Huang–Rhys factors and the Stokes shift following the host lattice parameter. It is
worthwhile remarking that this increase of the Stokes shift, ES, on passing from KMgF3:Mn2+
to RbCdF3:Mn2+ is compensated by the increase of the energy difference, EG, between 4T1g

and the ground state, making 2� = ES/EG to be nearly constant along the series of cubic
fluoroperovskites [10, 13, 40]. As was already pointed out, an increase of the � parameter
favours the luminescence quenching [18, 13].

The importance of the elastic coupling of the complex to the rest of the lattice in connection
with the existence of coherent tunnelling in E ⊗ e Jahn–Teller systems has recently been
emphasized [54]. It has been shown that the barrier among equivalent configurations is
dominated by the anharmonicity of the eg mode [53] which in turn can be softened by an
increase of the elastic coupling of the complex to the rest of the lattice [54].

Due to the localized character of the interaction between active electrons and local
vibrations, the normal coordinates describing the distortion related to the 6A1g →4 T1g

excitation essentially involve coordinates of ligand ions. According to the theory of elasticity in
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three dimensions, it is expected that if the Mn2+–F− distance changes by 2% then the Mn2+–
Mg2+ distance with second neighbours along 〈100〉 directions would change by ∼0.5%. The
vibration of ligand ions against the wall formed by the host lattice should be viewed as a
resonant mode, as suggested earlier by Sturge [22]. For instance, the highest frequency of
the KMgF3 lattice is close to 600 cm−1 [55]. It is important to notice that after a Franck–
Condon excitation the creation of local vibration quanta has been observed. This energy is
later transferred to the host lattice phonons [29].

The present results support the conclusion that E0
S is determined by the coupling with

a1g and eg local modes while the coupling with the t2g shear mode is not relevant. However,
this situation can be different when the local geometry changes from octahedral to cubic or
tetrahedral. Work along this line is now under way.
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